Discovering the Power of SAS Metadata 6/6/2019

Discovering the Power of SAS Metadata:
An Introduction to Dictionary Tables and Views

Frank Dilorio
CodeCrafters, Inc.
Philadelphia PA

Agenda

What are Dictionary Tables?

®* Resources

Accessing them efficiently

Commonly used tables

Examples of use

(c) 2019 CodeCrafters, Inc. 1

Discovering the Power of SAS Metadata 6/6/2019

What are Dictionary Tables?

e Metadata describing activity in a SAS program
— Available since SASV6.07

— Columns and tables added with new releases

e Metadata?
— Generally: “data about data”

— SAS-centric: data describing the environment in which a

program is executing
— Can be either ignored or exploited

— But helpful to know about their presence and contents (“One

thing you can never say is that your haven’t been told.” Dr. Krakower, The Sopranos)

What are Dictionary Tables? (o)

* Dictionary Tables:
— Describe current settings and resources used by a program
— Are always created at the start of a session (not optional!)
— Are constantly and automatically updated during the session
— Are read-only (they’re modified by activity in your program,
but you cannot directly change their content)

— Cannot have structure changed (add/delete variable,

change format, etc.)

— Have 1 or more views defined in SASHELP

(c) 2019 CodeCrafters, Inc. 2

Discovering the Power of SAS Metadata

Resources
* Conference papers (Lex]Jansen.com)
* Forums: SAS Community, SAS-L (better for usage q’s)
* SAS online documentation? Not very helpful.
* Browse in desktop/EG:

—"

Macro to Describe Tables

%macro Dictinfo;

proc sql noprint;
select distinct memname, count(distinct memname)
into :tbl separated by " -, :ntbl
from dictionary.dictionaries ;

select memname, count(distinct memname)
into :view separated by " ", :nview

from dictionary.views

where memname like "V%' & libname = "SASHELP*

& memtype = "VIEW® ;

%do 1 = 1 %to &ntbl.;
%let item = %scan(&tbl., &i.);
describe table dictionary.&item.;
%end;

%do 1 = 1 %to &nview. ;
%let item = %scan(&view., &i.);
describe view sashelp.&item.;
%end;

quit;
%mend ;

(c) 2019 CodeCrafters, Inc.

6/6/2019

Discovering the Power of SAS Metadata 6/6/2019

Partial Macro Output

For each table and view ...
NOTE: SQL table DICTIONARY.COLUMNS was created like:

create table DICTIONARY.COLUMNS
(
libname char(8) label="Library Name-®,
memname char(32) label="Member Name®,
memtype char(8) label="Member Type®,
name char(32) label="Column Name-®,
type char(4) label="Column Type~®,
length num label="Column Length",
npos num label="Column Position”®,
varnum num label="Column Number in Table",
label char(256) label="Column Label",
format char(16) label="Column Format-,
informat char(16) label="Column Informat®,
idxusage char(9) label="Column Index Type*

)
Somewhat helpful, but doesn’t give much of an idea of

content, what values are stored, case-sensitivity, etc.

Using the Tables

¢ SQL

— Access Tables with LIBNAME DICTIONARY (yes, that’s a
10 character LIBNAME)

— Access Views with LIBNAME SASHELP

— Generally, Tables are accessed faster than views
* Elsewhere

— No access to DICTIONARY.table, just SASHELP.view
* Anywhere

— Faster access if you don’t modify columns that are part of a
table/view’s index

(c) 2019 CodeCrafters, Inc. 4

Discovering the Power of SAS Metadata 6/6/2019

Commonly Used Tables

32 tables in Version 9.4

Nice, but not realistic, to know everything about all of

them. High—altitude view is good for starters.

Let’s look at some of the more frequently used tables

We’ll present examples of use later

Commonly Used Tables

Table/View usage in Rho macro library

COLUMNS 63
TABLES 37
FORMATS 15
MACROS 10
EXTFILES 9
LIBNAMES 8
OPTIONS 5
MEMBERS 3
CATALOGS 3
TITLES 2
STYLES 2
VIEWS 1

(c) 2019 CodeCrafters, Inc. 5

Discovering the Power of SAS Metadata

dictionaries
tables
columns
options
titles
formats
xattrs
macros
extfiles

functions

Table Reference

Commonly Used Tables

“data about data about data”

Non-SAS member names can be problematic
Case-sensitivity! Compare w/ CONTENTS output
Beware of OFFSET!

Titles and footnotes

System and user-defined

“Extended attributes?!” Next slide. Be patient...

As with OPTIONS, beware of OFFSET.

Allocated automatically by SAS; FILENAME; XPT; other

An example of “Why would | ever need this?”

run;

li
X
X
X
X
X
X

TESTX
TESTX
TESTX
TESTX
TESTX

TESTX

Brieﬂy: Extended Attributes

* NewinV9.4
® (Create user-defined metadata at dataset and/or variable level

* Add/Remove/Update using PROC DATASETS:
modify dataset;
xattr add ds attribl=valuel;
xattr add var varl(attribl=valuel)

var2(attribl=valuel attrib2=value2);

* DICTIONARY.XATTRS

bname memname name xattr xtype xoffset xvalue

sortBy char 0 study subject
scope char O internal
vl role char 0 char demo
v2 long char 0 really really really
v2 long char 200 ly long
v2 int’l num 0 1

¢

(c) 2019 CodeCrafters, Inc.

6/6/2019

Discovering the Power of SAS Metadata 6/6/2019

Examples of Use

As we go through examples keep in mind what’s needed
to use the Tables and Views effectively:

* Knowledge of content (values, case-sensitivity, possible

quirks) and granularity
* Use is most effective via PROC SQL

These are simple, “proof of usefulness” examples. Think
how these code snippets can be “macrotized” and made
into powerful, general-use applications.

1: List/ Count of Datasets

Any number of ways to do this!

proc sql noprint;
select memname into :datasets separated by “ *
from dictionary.members
where memtype = “DATA” & libname = “PROD”

%Iet datasetsN = &SQLobs. ;
quit;

%hdo idx = 1 %to &datasetsN.;
%let dsn = %scan(&datasets., &idx.);
proc print data=prod.&dsn.(obs=5);
title “First 5 obs from PROD.&dsn.”’;
run;

Y%end;

Table Reference

(c) 2019 CodeCrafters, Inc. 7

Discovering the Power of SAS Metadata 6/6/2019

1: List/ Count of Datasets (ont)

3

38
“Consider the source” =2 = ' '

M 4 » M| Firstsheet | Second %1
Ready |

proc sql noprint;
select memname into :-datasets separated by
from dictionary.members
where memtype = “DATA” & libname = “PROD~

%Iet datasetsN = &SQLobs. ;
quit;

&datasets = "First sheet$" Second$
&datasetsN = 2

Count is correct but %Scan would create incorrect
DSN’s ("First and sheet$").This is when

knowledge of quirks/rules/etc. becomes important.

Table Reference

1: List/ Count of Datasets (ont)

proc sql noprint;
select memname into :-datasets separated by
from dictionary.members
where memtype = “DATA” & libname = “PROD~

%Iet datasetsN = &SQLobs. ;
quit;

&datasets = "First sheet$"~Second$
&datasetsN = 2

We can parse &datasets reliably once we add ~ as the

3rd argument to %scan

Table Reference

(c) 2019 CodeCrafters, Inc. 8

Discovering the Power of SAS Metadata 6/6/2019

2: Variables Not Compatible with XPT

data PROD.FINAL;
length "has gap®n LongVarName clean $1 longlbl 3
TooLong $1000;

run;

proc sql noprint;
create table notvValid as
select name, label, length
from dictionary.columns
where libname = “PROD" and memname = “FINAL" &

(index(trim(name),) >0]
length(nhame) > 8 |
length(label) > 40 |
length > 200

) :

Table Reference

3: Identify User-Written Formats

[1] Simply display them:

proc print data=sashelp.vformat(where=(source="C"));

[2] Save for later use (possible in PROC FMT CNTLIN

dataset):

%let userFmtN = O;

proc sql noprint;
create table userFmt as
select *
from dictionary.formats
where fmtType = “F’

%let userFmtN = &SQLobs.;
quit;

Table Reference

(c) 2019 CodeCrafters, Inc. 9

Discovering the Power of SAS Metadata

4: Option Capture, Reset, Restore

Macro best practice: don’t overwrite user’s settings

* Capture ;
proc sql noprint;
select setting into :OPTcent
from dictionary.options
where optname="CENTER";
select catT("Is=", setting) into :OPTlinesize
from dictionary.options
where optname="LINESIZE"; /* Full name, not alias (LS)! */
quit;
* Reset ;
options linesize=200 center=0;
... procs go here ...

* Restore ;
options &OPTcent. &OPTlinesize.;

Table Reference

5: Count Observations in a Dataset

Just one of many ways to do this:

%macro countobs(data=, count=_count);
%global &count.;

%let data = %upcase(&data.);

%if %index(&data., .) > 0 %then %do;
%let libname %scan(&data., 1, .);
%let memname %scan(&data., 2, .);
%end;

%else %do;
%let libname
%let memname
%end;
proc sgl noprint;

select nobs into :&count

from dictionary.tables

where libname="&libname." & memname="&memname.""

& memtype=“&data.” ;

WORK ;
&data. ;

quit;

%if &sqlobs. = 0 %then %let &count. = -1;

%put COUNTOBS: Count variable &count. [&&&count];
%mend;

Table Reference

(c) 2019 CodeCrafters, Inc.

6/6/2019

10

Discovering the Power of SAS Metadata 6/6/2019

6: Display Global Macro Variables

More work, but more readable, than %put _global _;

proc sql noprint;
create table _macvars_ as
select name, offset, scope, value
from dictionary.macros
where offset=0 and scope="GLOBAL"
order by name

quit;
data _null_;
set _macvars_;

put name @20 value $80.;
run;

Table Reference

7: Identity Conﬂicting Attributes

Like-named variables in a library should have identical type and

length.

proc sql noprint;
create table tl_discrepancies as
select distinct catT(type, length) as tl, name
from dictionary.columns
where libname=*“PROD”
group by name
having count(distinct tl) > 1

quit;

Table Reference

(c) 2019 CodeCrafters, Inc. 11

Discovering the Power of SAS Metadata 6/6/2019

Wrapping Up ...
* Dictionary tables are: powerful; predictable; available by
default
* Using them requires knowledge of: SQL, table structure

* Most effective use is via SQL, saving the information as a
table or macro variable(s)

* TheTables are an integral part of general-purpose
macros (consider the potential for expansion of Example
7, previous slide)

e Uses are “only limited by your imagination”

Thanks for Coming!

Your comments and questions are valued and

encouraged:
FrankDilorio(@gmail.com

Note: CodeCraftersinc.com web site and email addresses have

been terminated (Phase I of my Ease into Retirement plan).

(c) 2019 CodeCrafters, Inc. 12

